Marcinkiewicz Spaces, Commutators and Non-commutative Geometry
نویسندگان
چکیده
Nigel J. Kalton was one of the most eminent guests participating in the Józef Marcinkiewicz Centenary Conference. His contribution to the scientific aspect of the meeting was very essential. Nigel was going to prepare a paper based on his plenary lecture. The editors are completely sure that the paper would be a real ornament of the Proceedings. Unfortunately, Nigel’s sudden death totally destroyed editors’ hopes and plans. Every mathematician knows how unique were Nigel’s mathematical achievements. Moreover the community of mathematicians in Poznań is very proud of Nigel’s friendship demonstrated many times during his visits at the Adam Mickiewicz University. For these reasons, to commemorate Professor Kalton, the editors of the Proceedings decided to print copies of the slides that he used during his plenary talk on June 29, 2010.
منابع مشابه
Bmo Estimates on Vanishing Generalized Morrey Spaces for Commutators of Marcinkiewicz Integrals with Rough Kernel Associated with Schrödinger Operator
Let L = −∆ + V (x) be a Schrödinger operator, where ∆ is the Laplacian on R, while nonnegative potential V (x) belonging to the reverse Hölder class. We establish the boundedness of the commutators of Marcinkiewicz integrals with rough kernel associated with schrödinger operator on vanishing generalized Morrey spaces.
متن کاملSharp Function Estimate and Boundedness on Morrey Spaces for Multilinear Commutator of Marcinkiewicz Operator
As the development of singular integral operators, their commutators have been well studied(see [1][3-5][10-12]). Let T be the Calderón-Zygmund singular integral operator. A classical result of Coifman, Rocherberg and Weiss (see [3]) state that commutator [b, T ](f) = T (bf) − bT (f)(where b ∈ BMO(Rn)) is bounded on Lp(Rn) for 1 < p < ∞. In [10-12], the sharp estimates for some multilinear comm...
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملMarginal and Relevant Deformations of N=4 Field Theories and Non-Commutative Moduli Spaces of Vacua
We study marginal and relevant supersymmetric deformations of the N = 4 super-Yang-Mills theory in four dimensions. Our primary innovation is the interpretation of the moduli spaces of vacua of these theories as non-commutative spaces. The construction of these spaces relies on the representation theory of the related quantum algebras, which are obtained from F -term constraints. These field th...
متن کاملParabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کامل